Remote triggering of tremor along the San Andreas Fault in central California
نویسندگان
چکیده
[1] We perform a systematic survey of triggered tremor along the San Andreas Fault in central California for the 31 teleseismic earthquakes with Mw 7.5 since 2001. We identify 10 teleseismic events associated with clear triggered tremor. About 52% of the tremor is concentrated south of Parkfield near Cholame, where ambient tremor has been identified previously, and the rest is widely distributed in the creeping section of the San Andreas Fault north of Parkfield. Tremor is generally initiated and is in phase with the Love wave particle velocity. However, the pattern becomes complicated with the arrival of the Rayleigh waves, and sometimes tremor continues after the passage of the surface waves. We identify two cases in which tremor is triggered during the teleseismic PKP phase. These results suggest that while shear stress from the passage of the Love waves plays the most important role in triggering tremor in central California, other factors, such as dilatational stresses from the Rayleigh and P waves, also contribute. We also examine the ambient tremor occurrence rate before and after the teleseismic events and find a transient increase of stacked tremor rate during the passage of the teleseismic surface waves. This observation implies that the occurrence time of tremor is temporally advanced by the dynamic stresses of the teleseismic waves. The amplitude of the teleseismic waves correlates with the occurrence of triggered tremor, and the inferred tremor-triggering threshold is 2–3 kPa. The relatively low triggering threshold indicates that the effective stress at the tremor source region is very low, most likely due to near-lithostatic fluid pressure.
منابع مشابه
Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations.
Seismic velocity changes and nonvolcanic tremor activity in the Parkfield area in California reveal that large earthquakes induce long-term perturbations of crustal properties in the San Andreas fault zone. The 2003 San Simeon and 2004 Parkfield earthquakes both reduced seismic velocities that were measured from correlations of the ambient seismic noise and induced an increased nonvolcanic trem...
متن کاملNonvolcanic tremors deep beneath the San Andreas Fault.
We have discovered nonvolcanic tremor activity (i.e., long-duration seismic signals with no clear P or S waves) within a transform plate boundary zone along the San Andreas Fault near Cholame, California, the inferred epicentral region of the 1857 Fort Tejon earthquake (moment magnitude approximately 7.8). The tremors occur between 20 to 40 kilometers' depth, below the seismogenic zone (the upp...
متن کاملGreat earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology
We summarize the importance of great earthquakes (Mw & 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, Xray radiographs and physical properties. Recurrence times of...
متن کاملHigh-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR
[1] We compared four interseismic velocity models of the San Andreas Fault based on GPS observations. The standard deviations of the predicted secular velocity from the four models are larger north of the San Francisco Bay area, near the creeping segment in Central California, and along the San Jacinto Fault and the East California Shear Zone in Southern California. A coherence spectrum analysi...
متن کاملComplex nonvolcanic tremor near Parkfield, California, triggered by the great 2004 Sumatra earthquake
[1] In several instances, the passing surface waves from large earthquakes have ignited nonvolcanic tremor (NVT) on major faults. Still, the mechanism of tremor and its reaction to the dynamic stressing from various body and surface waves is poorly understood. We examine tremor near Parkfield, California, beneath the San Andreas fault triggered by the Mw 9.2, 2004 Sumatra earthquake. The prolon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009